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Abstract 

Objective 

The first objective was to assess the influence of a health education program that placed emphasis on improving physical activity 

level and diet quality on the microbiota. The second objective was to investigate the effect of extrinsic and intrinsic factors on the 

responses of individual microbiota taxa to the health education intervention.  

Design 

A secondary analysis of the Full Plate Diet (FPD) trial, a randomized controlled, clinical trial which included a 10-week health 

education program at Loma Linda, CA. 

Setting 

Drayson Center, Loma Linda University, CA. 

Method 

Fecal samples were collected at baseline (Pre) and after the termination of the health education intervention (Post). Bacterial 

DNA were extracted and 16S rRNA amplicon were then sequenced.  

Results 

No significant differences were observed, for any of the groups, in the α or ß diversities between baseline and 

postintervention. Baseline microbiome significantly determined the shift of the individual microbial taxa; however, treatment 

type, gender, and baseline BMI, did not predict this shift.  
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Conclusion 

A health education intervention emphasizing stress management and improvement in diet quality and physical activity did not 

have much influence on abundance and diversity of microbiota in a group of obese middle-aged adults. The shift in the 

microbiome, however, and the responsiveness to health education intervention could be predicted by the baseline microbiome 

level. 

Trial Registration 

Registration number is NCT03232970; July 28, 2017 

Background 

The gut microbiota are a highly diverse, metabolically active and complex community of microorganisms that have a vast 

number of biological functions which benefit the host including the production of vitamins 1, fermentation of undigested 

nutrients 2,3, maturation of the immune system 4, and regulation of glucose and lipid metabolism 5. The most abundant 

bacterial phyla that are detected in human feces are Bacteroidetes and Firmicutes 6. 

Various lifestyle factors modulate the microbiota’s composition and metabolic activity, and thus impact the roles they play in the 

prevention/development of chronic diseases 7. Smoking, for instance, increases Bacteroides-Prevotella, 2 main genera within 

the 

Bacteroidetes phyla, in healthy individuals which, in-return, could increase the risk of Crohn’s Disease 8. Stress, another lifestyle 

factor, can affect the colonic motor activity and thus alter gut microbiota profiles, including the reduction in the numbers of 

potentially beneficial Lactobacillus 9. Higher levels of physical activity and cardiorespiratory fitness have been shown to be 

associated with higher fecal bacterial alpha diversity and with increased level of certain phyla in the feces of healthy adults 10. 

Obesity has been shown to lead to shifts in gut microbial populations manifested through the increase in Firmicute and the 

reduction in Bacteroidetes 11,12. 

Different dietary patterns could also modulate the gut bacterial communities 13,14. Adopting a plant-based diet, for instance, 

leads to an increase in the abundance of Prevotella 14,15. Long-term animal-based diets rich in animal protein and saturated fat, 

on the other hand, have been positively associated with bile-tolerant microorganisms such as Clostridia 13 and Bacteroides 16,17.  

The observed influence of the plant-based diet on the microbiota is related to polyphenols 18, and to dietary fibers 19, non-

digestible carbohydrates and lignin 20. Polyphenols have been shown to increase the levels of Bifidobacterium and 

Lactobacillus; both play anti-pathogenic and anti-inflammatory roles and offer cardiovascular protection 18. 

Even though the influence of different lifestyle factors on the microbiota is established by various studies 10,13,14, not much work 

has been carried out to translate their findings to the community.  Further research is thus required to explore the effect of an 

intervention program that targets the community, by targeting different lifestyle factors, on the microbiome.  Our Full Plate Diet 

(FPD) clinical trial has previously shown that a 10-week health education intervention improved the diet quality, reduced body 

weight, and decreased total cholesterol 21,22 in a group of middle-aged overweight individuals. In this secondary analysis of the 

FPD, the main purpose was to investigate the influence of this health education program on the bacterial community. We further 

assessed the effect of various extrinsic and intrinsic factors on the responses of individual bacterial taxa to the health education 

intervention, at different taxonomic levels. 
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The gut microbiota are a highly diverse, metabolically active and complex community of microorganisms that have a vast 

number of biological functions which benefit the host including the production of vitamins 1, fermentation of undigested 

nutrients 2,3, maturation of the immune system 4, and regulation of glucose and lipid metabolism 5. The most abundant 

bacterial phyla that are detected in human feces are Bacteroidetes and Firmicutes 6. 

Various lifestyle factors modulate the microbiota’s composition and metabolic activity, and thus impact the roles they play in the 

prevention/development of chronic diseases 7. Smoking, for instance, increases Bacteroides-Prevotella, 2 main genera within 

the 

Bacteroidetes phyla, in healthy individuals which, in-return, could increase the risk of Crohn’s Disease 8. Stress, another lifestyle 

factor, can affect the colonic motor activity and thus alter gut microbiota profiles, including the reduction in the numbers of 

potentially beneficial Lactobacillus 9. Higher levels of physical activity and cardiorespiratory fitness have been shown to be 

associated with higher fecal bacterial alpha diversity and with increased level of certain phyla in the feces of healthy adults 10. 

Obesity has been shown to lead to shifts in gut microbial populations manifested through the increase in Firmicute and the 

reduction in Bacteroidetes 11,12. 

Different dietary patterns could also modulate the gut bacterial communities 13,14. Adopting a plant-based diet, for instance, 

leads to an increase in the abundance of Prevotella 14,15. Long-term animal-based diets rich in animal protein and saturated fat, 

on the other hand, have been positively associated with bile-tolerant microorganisms such as Clostridia 13 and Bacteroides 16,17.  

The observed influence of the plant-based diet on the microbiota is related to polyphenols 18, and to dietary fibers 19, non-

digestible carbohydrates and lignin 20. Polyphenols have been shown to increase the levels of Bifidobacterium and 

Lactobacillus; both play anti-pathogenic and anti-inflammatory roles and offer cardiovascular protection 18. 

Even though the influence of different lifestyle factors on the microbiota is established by various studies 10,13,14, not much work 

has been carried out to translate their findings to the community.  Further research is thus required to explore the effect of an 

intervention program that targets the community, by targeting different lifestyle factors, on the microbiome.  Our Full Plate Diet 

(FPD) clinical trial has previously shown that a 10-week health education intervention improved the diet quality, reduced body 

weight, and decreased total cholesterol 21,22 in a group of middle-aged overweight individuals. In this secondary analysis of the 

FPD, the main purpose was to investigate the influence of this health education program on the bacterial community. We further 

assessed the effect of various extrinsic and intrinsic factors on the responses of individual bacterial taxa to the health education 

intervention, at different taxonomic levels. 
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Methods 

Study Design and Participants 

Figure 1. Full Plate Diet Study Design 

 
Data collected at baseline (week 1) and after the termination of the Health education (week 12) for the control and intervention 

groups 

This secondary analysis focused on the microbiota aspect of the FPD Study, a randomized controlled, clinical trial conducted at 

Loma Linda University, CA, USA. The design, methods and primary objectives of the FPD trial have been described by Dos 

Santos, 

Beeson, Segovia-Siapco, Koranda and Jehi 22. In brief, a 10-week health education program that placed emphasis on improving 

physical activity level and diet quality was conducted to determine its impact on body weight and on various clinical variables. 

Subjects were included if they were 21 to 65 years old, had a body mass index (BMI) between 25 and 35 kg/m2, did not have a 

debilitating disease, and had not previously participated in the Full Plate Diet program. Then, the participants were randomly 

assigned to either a health education intervention group or to a control group (receiving one stress management class). 

In the current secondary analysis, we particularly focused on assessing the effect of health education on microbiota abundance 

and diversity. As displayed in Figure 1, fecal occult samples were collected for both groups at baseline (week 1; between April 1 

and 8 of 2018) and after the termination of the intervention (week 12; June 17 – 24). The health education intervention was 

conducted from week 2 to week 11. 

The original study protocol was approved by the Institutional Review Board at Loma Linda University (LLU-IRB # 5170138). All 

participants provided a written informed consent before enrolling in the study. 

Intervention 

The health education intervention is described by Dos Santos, Beeson, Segovia-Siapco, Koranda and Jehi 22. In brief, it was 

conducted through educational classes once a week for 10 weeks at the Loma Linda University Drayson Center, a wellness center  

that promotes physical, emotional, and social wholeness through various sports, fitness activities and health programs. The 

main goal was to help participants adopt the Full Plate Diet by improving their diet quality and increasing their intake of fruits, 
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vegetables, and whole grains. The intervention consisted of a nutrition course provided through 10 two-hour lectures. The health 

education did not place emphasis on the restriction of calorie intake. It was mainly focused on the importance and the means to 

enhance nutrient density by increasing dietary fiber intake and on the promotion of various lifestyle modification tools such as 

physical activity, stress management, and emotional eating. 

Data Collection and Procedures 

Anthropometric & clinical evaluations The complete data collection protocols of the original study are described elsewhere 

22. 

Fecal sample collection Fecal samples were collected (Immunostics; Hema-screen) at baseline and after the termination of 

the health education intervention, stored at -80 Co at the School of Public Health, Loma Linda University, and kept frozen until 

further processing. To conduct the analysis of the microbiota, the occult samples were shipped as a single batch to the 

appropriate laboratory for the analysis of the microbiota. 

DNA extraction, 16S V4 ribosomal RNA (rRNA) gene amplicon sequencing and microbiome data processing 

Bacterial DNA was extracted and 16S rRNA amplicon were sequenced by Microbiome Insights Inc. (Vancouver, BC, Canada). In 

brief, specimens were placed into a MoBio PowerMag Soil DNA Isolation Bead plate and were extracted following MoBio’s 

instructions on a KingFisher robot (Mo Bio Laboratories, Inc., Indiana, USA). Bacterial 16S rRNA genes were PCR-amplified 

with dual-barcoded primers set (515F /806R) targeting the V4 region (5’-GTGCCAGCMGCCGCGGTAA-3’, and 5’- 

GGACTACHVGGGTWTCTAAT-3’), based on the protocol by Kozich, Westcott, Baxter, Highlander and Schloss 23. Amplicons 

were purified, normalized using a SequalPrep kit (Invitrogen, Eugene, OR), then quantitated with a Qubit 2.0 flourometer to be 

prepared for illumine sequencing. Amplicons were sequenced with an Illumina MiSeq using the 300-bp paired-end kit (v.3). The 

potential for contamination was addressed by co-sequencing DNA amplified from the specimen’s template-free controls 

(negative control) and extraction kit reagents. A positive control consisting of cloned SUP05 DNA was also included. An OTU 

was 

considered putative contaminant and removed if its mean abundance in the controls reached or exceeded 25 % of its abundance 

in the specimens. 

Raw sequences were first merged, aligned and pre-clustered using a 2-nucleotide threshold 24. De novo chimera detection was 

done with the abundance-based algorithm implemented in UCHIME 25. Then, reads were denoised and clustered into 

97%similarity operational taxonomic units (OTUs) against the Silva (v. 138) database by the Mothur software package (v. 1.44.1) 

26 following the recommended procedure by Mothur 27. 

Samples which had a lower minimum sequences depth (3000) were discarded. Subjects who had viable sequencing data for both 

‘before’ and ‘after’ intervention were exclusively included in the statistical analyses. OTUs not seen more than 10 times in at least 

15% of total number of samples were removed. This approach resulted in 17 subjects in the intervention group, 16 subjects in the 

control group, and a total of 260 OTUs which were used in downstream analyses and accounted for 98.8% of the approximately  

2.8 million-curated reads. 

Before ordination and statistical analysis, OTU count data were transformed into relative abundance and centered-log ratio 

(CLR) data to account for compositionality 28 using microbiome package (Leo Lahti et al.  microbiome R package.  URL: http:// 

microbiome.github.iowith). Finally, all OTUs, taxonomic and meta data, were imported into R studio platform (v1.2.5033 © 

2009-2019 Rstudio, Inc.), programed by R language (v3.5.3) 29 and managed by phyloseq package 30. 

Anthropometric & clinical evaluations The complete data collection protocols of the original study are described elsewhere 

22. 
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Fecal sample collection Fecal samples were collected (Immunostics; Hema-screen) at baseline and after the termination of 

the health education intervention, stored at -80 Co at the School of Public Health, Loma Linda University, and kept frozen until 

further processing. To conduct the analysis of the microbiota, the occult samples were shipped as a single batch to the 

appropriate laboratory for the analysis of the microbiota. 

DNA extraction, 16S V4 ribosomal RNA (rRNA) gene amplicon sequencing and microbiome data processing 

Bacterial DNA was extracted and 16S rRNA amplicon were sequenced by Microbiome Insights Inc. (Vancouver, BC, Canada). In 

brief, specimens were placed into a MoBio PowerMag Soil DNA Isolation Bead plate and were extracted following MoBio’s 

instructions on a KingFisher robot (Mo Bio Laboratories, Inc., Indiana, USA). Bacterial 16S rRNA genes were PCR-amplified 

with dual-barcoded primers set (515F /806R) targeting the V4 region (5’-GTGCCAGCMGCCGCGGTAA-3’, and 5’- 

GGACTACHVGGGTWTCTAAT-3’), based on the protocol by Kozich, Westcott, Baxter, Highlander and Schloss 23. Amplicons 

were purified, normalized using a SequalPrep kit (Invitrogen, Eugene, OR), then quantitated with a Qubit 2.0 flourometer to be 

prepared for illumine sequencing. Amplicons were sequenced with an Illumina MiSeq using the 300-bp paired-end kit (v.3). The 

potential for contamination was addressed by co-sequencing DNA amplified from the specimen’s template-free controls 

(negative control) and extraction kit reagents. A positive control consisting of cloned SUP05 DNA was also included. An OTU 

was considered putative contaminant and removed if its mean abundance in the controls reached or exceeded 25 % of its 

abundance in the specimens. 

Raw sequences were first merged, aligned and pre-clustered using a 2-nucleotide threshold 24. De novo chimera detection was 

done with the abundance-based algorithm implemented in UCHIME 25. Then, reads were denoised and clustered into 

97%similarity operational taxonomic units (OTUs) against the Silva (v. 138) database by the Mothur software package (v. 1.44.1) 

26 following the recommended procedure by Mothur 27. 

Samples which had a lower minimum sequences depth (3000) were discarded. Subjects who had viable sequencing data for both  

‘before’ and ‘after’ intervention were exclusively included in the statistical analyses. OTUs not seen more than 10 times in at least 

15% of total number of samples were removed. This approach resulted in 17 subjects in the intervention group, 16 subjects in the 

control group, and a total of 260 OTUs which were used in downstream analyses and accounted for 98.8% of the approximately  

2.8 million-curated reads. 

Before ordination and statistical analysis, OTU count data were transformed into relative abundance and centered-log ratio 

(CLR) data to account for compositionality 28 using microbiome package (Leo Lahti et al.  microbiome R package.  URL: http:// 

microbiome.github.iowith). Finally, all OTUs, taxonomic and meta data, were imported into R studio platform (v1.2.5033 © 

2009-2019 Rstudio, Inc.), programed by R language (v3.5.3) 29 and managed by phyloseq package 30. 

Statistical analysis 

All univariate and multivariate analyses were performed using R studio. Data were presented as mean ± SD of relative 

abundance; CLR data were served as an input for statistical tests unless otherwise stated.  

Bacterial community analysis To explore the impact of health education on the bacterial community, α-diversity and 

βdiversity were assessed. To estimate the dissimilarity of entire bacterial community of one sample to another (β-diversity), 

BrayCurtis distance was calculated from relative abundance data of all OTUs and stored in a matrix form. Then, it was collapsed 

into 3 vectors of Principal Coordinate Analysis (PCoA1; PCoA2; PCoA3) using the vegan package 31 and visualized in a 3-D plot 

using rgl package following the general procedure described by Daniel Alder. Variation in community structure was assessed 

with permutational multivariate analysis of variance (PERMANOVA; vegan package) with the treatment group and time points 

as the main factors. To evaluate the richness, evenness and phylogenetic diversity (PD) within each sample, 3 indices of α-

diversity, Observed Species, Shannon Diversity Index, and PD were employed using phyloseq and ape package v 5.4.1 32 and 
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were visualized by ggplot2 package 33. Linear mixed models were applied using lme4 package 34 to estimate the effect of the 

intervention and time point on α-diversity while controlling for the within subject difference.  

Fecal bacterial composition analyses Comparisons of phyla, families, genera, and OTUs, between baseline and week 10, 

were performed by Wilcoxon tests, while comparisons of time changes (i.e., Δ week10- baseline) between intervention and 

control groups were performed by Mann–Whitney tests. CLR data were used as an input for both tests. For the OTUs’ level, only 

the top 100 selected based on the average relative abundance of all samples were included in abundance testing. P values were 

adjusted by false discovery rate (FDR) and were considered statistically significant when adjusted values were less than 0.1. 

These comparisons were validated by an independent approach which used generalized linear model from Deseq2 package 35. 

Taxa were considered significant when adjusted p value (Deseq2) were less than 0.1 and log2 fold change exceeded 2. The 

significant taxa detected by both tests were considered statistically different. 

Sample Size Estimation To estimate the sample size, an effect size of 0.64 was attained from literature and derived from So, 

Whelan, Rossi, Morrison, Holtmann, Kelly, Shanahan, Staudacher and Campbell 19 to compute and compare the differences in 

the changes of the abundance of Bifidobacterium spp. from baseline to post-intervention between the control and intervention 

groups that are of clinical importance. G*Power 3.1 (3.1.9.2) was utilized for the power analysis calculations taking into account 

80% power and allowing for a type I (α) error of 5%. This study needed a minimum of 6 subjects/per group or a total sample of 

16 subjects after taking into account a potential 20% drop- out rate. Data on 33 subjects of the main FPD study (16 in the control 

and 17 in the intervention) were available and showed enough power (>80%) for the current secondary analysis. 

Results 

Participants Characteristics 

The characteristics of the participants have been previously published by Jehi, Beeson, Segovia-Siapco, Koranda and Dos Santos 

21 and by Dos Santos, Beeson, Segovia-Siapco, Koranda and Jehi 22. In brief, the average age was 53.4 ± 8.8 and 53.8 ± 11.6 

years for the control and intervention groups, respectively. The baseline weight was 82.3 ± 16.8 kgs and 86 ± 14 kgs for the 

control and intervention groups, respectively. The majority of the population at baseline were females, overweight, non-smokers, 

employed for wages, had a 4-year college degree, did not consume alcohol, and did not have any other cardiovascular disease 

risk factors. 

Health Education and α-Diversity 

Figure 2. Box Plots Comparing the α-Diversity between the Intervention and Control Group (N=33) 
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Box Plots comparing α-diversity between Intervention (Health Education) and Control groups at baseline (Pre) and post the 

intervention (post); Intervention group (n = 17); Control group (n=16).  

α-diversity defines the richness and evenness of the gut microbiota’s composition 36,37. Shannon diversity index is a statistic 

index utilized to characterize the bacterial community’s α-diversity and has been computed and illustrated for the 2 groups at 

baseline and post-intervention. The α-diversity of the observed species along with PD (the degree of divergence among the 

sampled sequences 38) were computed as well. As displayed in figure 2, the box plots showed that there are no significant 

differences in the α-diversity between baseline and post-intervention for both groups. 

Health Education and ß Diversity 

Figure 3. PCoA Plot of Bray-Curtis Dissimilarity 

 
PCoA Plot of Bray-Curtis Dissimilarity to compare ß-diversity between Intervention (Health Education) and Control groups at 

baseline (Pre) and post the health education intervention (post); Intervention group (n = 17); Control group (n=16). ß diversity 

measures the differences between microbial communities from different environments. To obtain a graphical representation of 

microbiome composition similarity among samples and to quantify the compositional dissimilarity, we summarized OTU 

abundances into Bray-Curtis dissimilarities and performed a PCOA ordination (figure 3). The Bray-Curtis dissimilarities are 

based on the relative abundance of the different bacterial taxa. Figure 3 displays 2 main clusters, one on the left side and one on 

the right. The overlapping clusters are a direct indication that the bacterial communities did not differ among groups (P value 

for time X Group = 0.99). 

Health Education Intervention and Microbiota Abundance 
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Table.1 Abundance of Bacterial Groups at Baseline and Post-Treatment for Participants of the FPD Trial 

(N=33) 

Taxonomic Ranks   Control Group  Intervention G 

 Phyla Families Genera Baseline 

Mean ± 

SD 

Posttreatment 

Mean ± 

SD 

P 

Valuea 

Baseline 

Mean ± 

SD 

Posttreatm 

Mean ± 

SD 

OTU    

OTU00001 Bacteroidota Bacteroidaceae Bacteroides 0.135 ± 

0.122 

0.121 ± 

0.081 

0.979 0.169 ± 

0.123 

0.134 ± 

0.123 

OTU00002 Bacteroidota Prevotellaceae Prevotella 0.155 ± 

0.200 

0.160 ± 

0.223 

0.979 0.089 ± 

0.209 

0.117 ± 

0.218 

OTU00003 Firmicutes Ruminococcaceae Faecalibacterium 0.096 ± 

0.042 

0.107 ± 

0.072 

0.979 0.077 ± 

0.047 

0.087 ± 

0.052 

OTU00011 Firmicutes Lachnospiraceae Roseburia 0.044 ± 

0.032 

0.040 ± 

0.024 

0.979 0.060 ± 

0.064 

0.081 ± 

0.088 

OTU00008 Firmicutes Lachnospiraceae Bacteroides 0.032 ± 

0.042 

0.034 ± 

0.049 

0.979 0.053 ± 

0.057 

0.030 ± 

0.034 

OTU00005 Firmicutes Lachnospiraceae Bacteroides 0.024 ± 

0.033 

0.012 ± 

0.018 

0.979 0.035 ± 

0.058 

0.024 ± 

0.038 

OTU00013 Bacteroidota Prevotellaceae Blautia 0.024 ± 

0.025 

0.017 ± 

0.014 

0.779 0.020 ± 

0.015 

0.023 ± 

0.020 

OTU00010 Actinobacteriota Bifidobacteriaceae Bifidobacterium 0.011 ± 

0.019 

0.007 ± 

0.011 

0.979 0.023 ± 

0.038 

0.027 ± 

0.034 

OTU00014 Firmicutes Ruminococcaceae Prevotellaceae 0.003 ± 

0.008 

0.005 ± 

0.013 

0.979 0.030 ± 

0.089 

0.028 ± 

0.079 

Genus00041 Bacteroidota Rikenellaceae Lachnospiraceae 0.014 ± 

0.014 

0.016 ± 

0.016 

0.979 0.013 ± 

0.013 

0.019 ± 

0.027 

Genus00079 Firmicutes Clostridia_unclassified CAG-352 0.006 ± 

0.008 

0.012 ± 

0.016 

0.979 0.021 ± 

0.022 

0.020 ± 

0.026 

 

Genus00021 Firmicutes Erysipelatoclostridiaceae Lachnospiraceae 0.017 ± 

0.029 

0.016 ± 

0.016 

0.979 0.012 ± 

0.014 

0.009 

± 0.010 
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Genus00023 Firmicutes Erysipelatoclostridiaceae Faecalibacterium 0.011 ± 

0.010 

0.012 ± 

0.013 

0.979 0.015 ± 

0.022 

0.015 ± 

0.018 

Genus00039 Firmicutes Oscillospiraceae Bacteroides 0.015 ± 

0.039 

0.025 ± 

0.083 

0.979 0.010 ± 

0.030 

0.004 

± 

0.013 

Genus00048 Firmicutes Acidaminococcaceae Blautia 0.015 ± 

0.017 

0.013 ± 

0.011 

0.979 0.008 ± 

0.005 

0.015 ± 

0.014 

Genera 

Genus00001 Bacteroidota Bacteroidaceae Bacteroides 0.294 ± 

0.223 

0.260 ± 

0.173 

0.833 0.346 ± 

0.210 

0.254 ± 

0.175 

Genus00002 Bacteroidota Prevotellaceae Prevotella 0.173 

±0.221 

0.175 ± 

0.246 

0.869 0.096 ± 

0.223 

0.133 ± 

0.250 

Genus00003 Firmicutes Ruminococcaceae Faecalibacterium 0.134 ± 

0.062 

0.150 ± 

0.098 

0.900 0.113 ± 

0.066 

0.126 ± 

0.052 

Genus00011 Firmicutes Lachnospiraceae Roseburia 0.090 ± 

0.072 

0.094 ± 

0.055 

0.869 0.083 ± 

0.039 

0.085 

± 

0.038 

Genus00008 Firmicutes Lachnospiraceae Bacteroides 0.075 ± 

0.036 

0.070 ± 

0.039 

0.794 0.055 ± 

0.026 

0.066 

± 

0.031 

Genus00005 Firmicutes Lachnospiraceae Bacteroides 0.050 ± 

0.034 

0.049 ± 

0.024 

0.974 0.069 ± 

0.064 

0.091 ± 

0.090 

Genus00013 Bacteroidota Prevotellaceae Blautia 0.010 ± 

0.025 

0.013 ± 

0.026 

0.869 0.034 ± 

0.092 

0.033 

± 

0.080 

Genus00010 Actinobacteriota Bifidobacteriaceae Bifidobacterium 0.012 ± 

0.022 

0.008 ± 

0.011 

0.871 0.025 ± 

0.038 

0.028 

± 

0.035 

Genus00014 Firmicutes Ruminococcaceae Prevotellaceae 0.006 ± 

0.008 

0.012 ± 

0.012 

0.869 0.021 ± 

0.022 

0.020 

± 

0.026 

Genus00041 Bacteroidota Rikenellaceae Lachnospiraceae 0.018 ± 

0.022 

0.017 ± 

0.025 

0.871 0.011 ± 

0.013 

0.010 ± 

0.010 

Genus00079 Firmicutes Clostridia_unclassified CAG-352 0.014 ± 

0.010 

0.013 ± 

0.010 

0.833 0.011 ± 

0.011 

0.010 ± 

0.009 

Genus00021 Firmicutes Erysipelatoclostridiaceae Lachnospiraceae 0.012 ± 

0.023 

0.014 ± 

0.030 

0.833 0.007 ± 

0.015 

0.012 ± 

0.030 

Genus00023 Firmicutes Erysipelatoclostridiaceae Faecalibacterium 0.006 ± 

0.007 

0.020 ± 

0.027 

0.233 0.007 ± 

0.011 

0.009 

± 

0.012 
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Genus00039 Firmicutes Oscillospiraceae Bacteroides 0.008 ± 

0.010 

0.012 ± 

0.015 

0.871 0.005 ± 

0.009 

0.005 

± 

0.007 

Genus00048 Firmicutes Acidaminococcaceae Blautia 0.010 ± 

0.015 

0.008 ± 

0.010 

0.100 0.007 ± 

0.008 

0.007 

± 

0.008 

SD, standard deviation 

Data displayed as mean of proportion ± SD P 

values > 0.01 denotes statistical significance 

a P-value generated by Wilcoxon test to assess significance level of change between baseline and post-treatment in the 

controlgroup 

b P-value generated by Wilcoxon test to assess significance level of change between baseline and post-treatment in 

theintervention (Health education) group 

The abundance of different microbial taxa was also measured for both groups and compared between baseline and 

postintervention. Table 1 displays the top 15 most abundant bacterial taxa for the different levels (OTU and Genera). The values 

presented in the table are proportions and not the actual quantities of the bacteria. As shown in table 1, there were no significant 

changes in the abundance of any of the bacterial taxa between baseline and post-intervention and no significant differences 

between the control and the intervention groups (P values > 0.01). 

Intrinsic and Extrinsic Factors and Abundance 

Figure 4: Predicting the Shift in Microbiome Between Baseline and Post-Intervention 

 

A: Phyla and families of which baseline can determine shift significantly, surge above red line where adjusted p-value is smaller 

0.05. Coordinate of each diamond are adjusted p-value (-log10) and the coefficient of 4 main predictors (baseline microbiome, 

treatments [Health Education; Control], baseline BMI and gender) of a multiple linear regression. B: Genera and OTUs of which 
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baseline can determine shift significantly, surge above red line where adjusted p-value is smaller 0.05. Coordinate of each 

diamond are adjusted p-value (-log10) and the coefficient of 4 main predictors (baseline microbiome, treatments [Health 

Education; Control], baseline BMI and gender) of a multiple linear regression. 

In order to better understand what intrinsic and extrinsic factors affect the responses of individual microbiota taxa to the 

intervention at different levels, a multilinear regression was conducted (figure 4). 

As displayed in figure 4, four different predictors were examined; the first was the baseline of the microbiome; the second was the 

type of treatment (intervention vs. control); the third was the baseline BMI of the subjects; and the fourth was gender. In parts A 

and B of figure 4, the X axis represented the estimates or coefficients of the factors and the Y axis was the -log10 of adjusted P 

values. Every dot in this figure represented a particular taxon.  As displayed in part A, taxa at the phylum and family levels were 

examined; taxa at the genus and the OTU levels were presented in part B. Out of all 4 factors, the baseline microbiome significantly 

determined the shift of the microbiome from baseline to post-intervention. Around half of the taxa surged above the red line 

signifying that baseline level could have significantly (P values < 0.05) determined the shift in microbiome; this was consistent 

across all the levels (phylum, family, genus, and OTU). Intervention type, gender, and baseline BMI did not predict the change of 

microbiome. 

Figure 5. Baseline Microbiome and the Shift in Microbiome Between Baseline and post-Intervention 
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Visualization of associations between baseline value and shifts (clr data) in particular taxa at different levels. Each dot represents 

baseline and shift of a subject in particular taxa. Black line is the regression line covered by 95% CI dark grey area.  

Figure 5 focused on the baseline microbiome factor and displayed the direction of the microbiome response; the associations 

between the baseline value and the shifts in particular taxa at different levels were displayed. Each dot represented baseline and 

the shift of a subject in a particular taxon. The black line is the regression line covered by 95% CI dark grey area. The taxa with 

highest significant adjusted P value and the lowest significant adjusted P value were presented. As displayed in the figure, there 

was a decrease in the abundance of the bacterial taxa for individuals with high baseline levels; there was an increase in the 

abundance of the bacterial taxa for those with low baseline levels. Additionally, data were proximal to the regression line within 

the shaded region which signifies strong findings. Finally, the slope and the direction of the change were negative.  
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Discussion 

Health education is a non-invasive and cost-effective intervention approach to improve the wellbeing of the community 39. We 

attempted to identify whether the observed benefits of health education in epidemiological studies could be explained by the 

modulation of the microbiome. We showed that a health education program that emphasized improvement in diet quality, 

physical activity, and stress management did not have a significant impact on the abundance and the diversity of the microbiota 

in a group of overweight middle-aged individuals. After examining a variety of intrinsic and extrinsic factors, we observed that 

the treatment type, gender, and baseline BMI, did not predict the change of individual microbiota taxa from baseline to 

postintervention. Baseline microbiome level, however, did significantly determine the shift of the individual microbiota taxa. 

Not much research has been conducted to investigate the effect of a lifestyle health education program on the microbiome; most 

of the existing investigations did not focus exclusively on education but also incorporated direct and intensive lifestyle 

interventions 40-44. When it comes to the diet, most existing studies examined the effect dietary fiber on the microbiome and 

showed little to no effect on both the α- 40-43 and the ß- 41,42 diversities. The lack of significant changes in the diversity could be 

possibly explained by the relative stability of the microbiome over time 42 and the short-term dietary interventions which are 

unlikely to modify the diversity of the gut microbiota 19. As for the abundance of various individual bacterial taxa, research 

mostly suggested that whole food intervention such as whole grains, had little to no effect 45-49. Interventions delivered through 

supplements, specifically fiber, on the other hand, were shown to significantly improve the abundance of Bifidobacterium sp. 

and Lactobacillus spp 50-53 but had no effect on the abundance of other bacterial groups such as of Bacteroides 54,  Roseburia 

52,55,56, Ruminococcaceae 51,57,58, and Faecalibacterium 51,52,59,60. These species can possibly be stimulated by other dietary 

components such as polyols and polyphenols 61 rather than fiber. 

It is important to understand what factors might have predicted the gut microbiome’s response to different lifestyle education 

interventions. For instance, research has shown that a variety of intrinsic and extrinsic variables 50,62,63 such as body weight 64 

and gender 65,66 can possibly affect the responsiveness of the bacteria to various dietary interventions. Our findings, however, 

indicated that neither gender nor baseline BMI predicts this responsiveness. We did find that the baseline microbiome level 

influences the shift in the individual microbiota taxa from baseline to post-intervention. Tuohy, Finlay, Wynne and Gibson 62 

suggested that individuals who had lower bifidobacteria concentrations at baseline experienced a more significant increase in 

bifidobacteria after the inulin intervention. Moreover, an investigation involving a group of healthy individuals showed that the 

intake of fructo-oligosaccharides and guar gum –rich biscuits improved bifidobacteria growth only in subjects with a baseline 

bifidobacteria concentration lower than 9.3 log10 cells/g 67. 

Our study has various strengths as it is one of few that investigated the effect of health education, exclusively, on the diversity 

and abundance of the microbiota in a group of healthy overweight individuals; most studies in literature emphasized the role of 

more aggressive and costly interventions on the microbiota abundance 19. Our study broadened the scope of other investigations 

and included a wide list of bacterial groups rather than focusing mainly on Bifidobacterium sp. and Lactobacillus spp 50-53. We 

also investigated a variety of intrinsic and extrinsic factors, highlighting baseline microbiome’s role of influencing the response 

of individual microbiota taxa to the health education intervention. 

The study, however, has limitations including the analyses of the microbial composition of feces to investigate the effect of health 

education intervention on gut microbiota profiles; the mucosal microbiota might differ from the microbial composition of feces 

68,69. Secondly, our intervention was of short-duration; 10 weeks might not have been enough to cause major improvements in 

the gut microbiota 19 and thus, longer-duration studies are required to better understand the chronic effect of fiber on 

microbiota diversity and abundance. Moreover, the study might have been impacted by selection bias since the participants 
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volunteered to participate 70. The inclusion of healthy volunteers and exclusion of individuals with debilitating diseases could 

have threatened the generalizability of the findings. We also were not able to analyze the level of short chain fatty acids, the 

major bacterial fermentative end products of complex carbohydrates and imperative indicators of bacterial fermentation in the 

colon 71 as they are usually degraded in the occult samples. Finally, our small sample size might have led to type 2 error and 

undermined the internal and external validity of the study72. Future studies with larger sample sizes are thus required to 

increase statistical power. 

Future investigations should aim to further assess the influence of different factors on the gut microbiota and on the host 

responsiveness to diet in order to develop effective gut microbiota and host outcome modulation strategies. More studies are 

also required to comprehend the impact of the long-term habitual fiber intake from whole foods on the gut microbiota. This is 

crucial since the microbiota in-return play a crucial role in chronic disease prevention. Future research should aim to 

understand the main function of these bacteria in modifying the risk of various chronic diseases among racial, ethnic, religious, 

disability, gender, and sexual minorities. These populations are at high risk of disease morbidity and mortality 73,74. By 

increasing opportunities for everyone to live the healthiest life possible and prevent disease, health equity will be achieved. 

Conclusion 

A health education program that emphasized improvement in diet quality, physical activity, and stress management did not have 

a significant impact on the abundance and the diversity of the microbiota in a group of overweight middle-aged individuals. The 

shift in the microbiome, however, and the responsiveness to the education intervention could be predicted by the baseline 

microbiome level. Future studies should further investigate the long-term impact of health education on the microbiome along 

with the influence of a variety of intrinsic and extrinsic variables that can affect the responsiveness of the microbiota to this 

intervention. 
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